
Journal of Sound and <ibration (2001) 248(4), 635}652
doi:10.1006/jsvi.2001.3807, available online at http://www.idealibrary.com on
SEISMOGRAMS OF MOVING TRAINS: COMPARISON
OF THEORY AND MEASUREMENTS

A. DITZEL, G. C. HERMAN AND G. G. DRIJKONINGEN

Centre for ¹echnical Geoscience, Delft ;niversity of ¹echnology, Mekelweg 4, 2628 CD Delft,
¹he Netherlands. E-mails: A.Ditzel@math.tudelft.nl; G.C.Herman@math.tudelft.nl;

G.G.Drijkoningen@ta.tudelft.nl

(Received 26 October 2000, and in ,nal form 6 April 2001)

High-speed trains can generate strong vibrations that propagate away from the track. In
this paper, an e$cient method is presented to calculate the displacements, generated by
a moving train. It is based on an integral representation of the response and is computed
numerically in the slowness domain. By expressing the "eld in terms of re#ection and
transmission properties of the layers, the e!ects of strati"cation are taken into account. Field
measurements with vertical geophones have been carried out and a comparison is made with
predictions from the theoretical model. The predicted vibrations show good agreement with
the experimental response; both the computed and measured results clearly show the
Doppler e!ect. Surface waves, generated by oscillating trains, can be observed at large
distances from the track, even if the train speed is lower than the speed of the surface waves.
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1. INTRODUCTION

Intensive ground vibrations can be generated by high-speed trains and can cause
annoyance to the public living or working in the vicinity of the track. Particularly in
soft-soil regions, where the train speed may approach or even exceed the surface-wave
speed, a high vibration level can occur. In recent years, the generation of vibrations due to
high-speed trains has received considerable attention. Several methods have been developed
to predict the vibration level.

Krylov [1] investigates the e!ect of track dynamics on the vibrations due to high-speed
trains. The vibrations generated by the bending track are computed with the aid of a Green
function formulation and its far"eld asymptotic behaviour in an elastic half-space. For
trains travelling with a lower speed than the Rayleigh wave in the half-space, the presence of
sleepers appears to be essential for the generation of vibrations. An increased e!ect on the
level of ground vibration occurs for trains travelling with trans-Rayleigh speed.

Herman [2] formulated the problem of vibrations generated by moving high-speed trains
in terms of a scalar integral-equation formulation. It was found that heterogeneities near the
track contribute to the vibrations at relatively large distances from the track, even if the
train speed is less than the subsurface wave speed.

Luco and Apsel [3] presented a method to obtain the dynamic three-dimensional
response of a layered half-space for an arbitrarily buried source. They made use of the
frequency-domain formulation based on representing the complete response in terms of
semi-in"nite integrals over the horizontal wavenumber. De Barros and Luco [4] made use
of this procedure to determine the steady state response of a multi-layered visco-elastic
half-space for a buried source that moves with constant velocity along a line. Numerical
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results for the displacement and the stress "eld are given for both surface and buried loads
moving with various subsonic and supersonic speeds.

Sheng et al. [5, 6] investigated the vibrations of a harmonic load moving over a layered
ground. The track, including rails, rail pads, sleepers and ballast, was modelled by means of
a multi-component mass}spring system. The ground was modelled as a structure of
three-dimensional visco-elastic layers overlying either a half-space or a rigid foundation.
From several calculations, it was shown that propagating waves are produced for loads
travelling with a velocity higher than the critical wave speed. It is shown that both constant
and harmonic loads contribute signi"cantly to the vibrations generated by the train.

In the present paper, the response of a layered half-space to a moving (high-speed) train is
investigated. The train is modelled by means of a vertical, oscillating point source, moving
over the horizontally layered, three-dimensional elastic half-space with a traction-free
surface. As a moving source can be considered as a superposition of point sources with
appropriate phases, the generated wave"eld can be calculated by expressing it as an integral
representation, which can be done e$ciently in the slowness domain (slowness is de"ned as
wavenumber divided by frequency). Further, to take the e!ects of layering into account, the
"eld is expressed in terms of transmission and re#ection properties of the layers. Finally, the
"eld is transformed back to the spatial domain and, subsequently, to the time domain by use
of an inverse Fourier transform.

The present paper is closely related to the papers by, e.g., de Barros and Luco [4] and
Sheng et al. [5, 6], in which models based on wavenumber theory are used. However, the
methods presented in references [4}6] make use of the propagator matrix method of
Thomson and Haskell [7, 8], and the approach in this paper is based on the more recent
approach of Kennett [9] instead. This method avoids exponentially growing terms which
correspond to the evanescent "eld and is reported to have better properties as far as
numerical stability and accuracy is concerned (see reference [9, p. 135]). This is especially
important in the case of thick layers. It is noted that Sheng et al. [5], showed that the
numerical di$culties can also be avoided with a modi"cation of the Thomson and Haskell
method.

Results from a multi-receiver "eld experiment, which was performed in order to measure
seismograms due to moving trains, are presented. The experimental set-up consisted of two
receiver lines, one perpendicular and one parallel to a railway track, each consisting of 24
geophones and recording vertical particle velocity. First, the signal due to a small explosive
charge was recorded, from which an estimate of the soil parameters could be made. These
soil parameters have been used as input parameters for the model. Several train passages
have been recorded and some of these results are shown in this paper. A comparison is made
between the experimental and theoretical results. The e!ect of train speed and oscillatory
behaviour of the train on the level of vibrations is investigated. The Doppler shift and the
other features occurring in the "eld data are investigated. The predictions of the vibrations
due to moving trains show a good qualitative agreement with the recordings from the "eld
experiment.

2. FORMULATION OF THE PROBLEM

2.1. MOVING SOURCES

A semi-in"nite elastic medium is considered, consisting of N homogeneous and
horizontal layers overlying a homogeneous elastic half-space. Each of the media is
characterized by its density o

n
and by the compressional and shear wave velocities a

n
and b

n



Figure 1. Geometry of the problem. The train is modelled by an oscillating point force, with strength f, moving
with constant velocity c over a layered medium. The medium consists of N homogeneous layers, overlying
a homogeneous half-space. Here, (x, y, z) is the stationary frame of reference and (x@, y, z) is the frame moving with
the train.
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(n"1, N#1). The wave velocities are assumed to be complex (with ReMa
n
, b

n
N*0 and

ImMa
n
, b

n
N)0) in order to take dissipation of the media into account. The surface of the

medium is taken to be traction-free and the radiation condition is imposed in the underlying
half-space. Figure 1 shows a schematic model of the geometry.

For each of the N layers, the equation of motion and the constitutive relation hold:
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where u is the displacement and q the stress tensor. Furthermore, z
n
is the interface below the
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x"xi

1
#yi

2
#zi

3
and u is the angular frequency of the Fourier transform. In equation (1),

f
j
is the force model of the train, which moves with a constant velocity c in the x direction. In

equation (2), j
n
and k

n
are LameH coe$cients.

Excited by irregularities in the track and the wheels of its wagons, the train can show an
oscillatory behaviour. In the train co-ordinate system (x@, y, z), a force is then observed
which is of the form

f
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where u
c
is the resonant frequency of the train and d is the one-dimensional Dirac delta

function. The strength and the direction of the force are denoted by a
j
. In equation (4), f G

j
denotes a three-dimensional point force, observed at position (x@, y, z) and exerted at
position (0, 0, 0). To obtain the force in the stationary frame of reference, the co-ordinate
transform x@"x!ct is used. Subsequently, the Fourier transform is applied. The moving
source in the stationary co-ordinate system (x, y, z) can now be written as
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where (x, y, z) is the position vector of the receiver in the stationary frame of reference. By
means of the window function=(u), the transfer function of the total acquisition system
(source wavelet, receiver transfer function and recording instrument transfer function) is
taken into account.

The moving point force can be expressed as a superposition of single point sources, each
of which has a di!erent phase due to the speed and the oscillatory movement of the train
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where the u-dependence of f
j
has been omitted for convenience. As the system is assumed to

be linear, the wave"eld generated by the moving source is obtained by superposition of the
wave"elds generated by a single point source with the result
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with uG
j

representing the Green solution, a state of disturbance, for a point force f G
j

, exerted
at position x

s
"(x

s
, 0, 0) and observed at position x"(x, y, z). For convenience, in

equation (9), the u-dependence of u
j
and uG

j
has been omitted. By using a complex notation

for the cosine term and using the shift invariance of the Green solution, the displacement
can be written as
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which in turn can be written as
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with p$

1
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c
/u)/c, the horizontal slowness for the x-co-ordinate, and xJ "x!x

s
. The

integral in equation (11) is recognized as a slowness transform with respect to the
x-co-ordinate. By using the inverse slowness transform for the y-co-ordinate, an expression
in terms of the horizontal slownesses is obtained:
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In equation (12), u8 G
j

denotes the slowness transform of the Green solution uG
j

with respect
to the spatial horizontal co-ordinates. The slowness transform with respect to the
x-co-ordinate can be calculated analytically, which leaves the response in the frequency
domain as an integral with respect to the slowness in the y direction. This integral is
computed numerically. In this way, the generated wave"eld can be calculated e$ciently.

2.2. GREEN SOLUTION OF A LAYERED MEDIUM

In order to calculate the response of the soil to the moving and oscillating load,
a representation of the Green solution in the slowness domain, uJ G

j
, for a layered medium has

to be obtained. Kennett [9] presented a derivation of the response of plane-layered media to
a point source. Because of the axial symmetry of the problem, Kennett poses the problem in
terms of cylindrical co-ordinates. To obtain a formulation of the Green solution in
equation (12) for plane-layered media in terms of slownesses, a method similar to that which
Kennett presents can be followed, although in the present formulation, the load is moving in
a "xed horizontal direction, and axial symmetry is lost. Therefore, use is made of Cartesian
co-ordinates and thus the present method becomes slightly di!erent. For this reason, all
expressions necessary for the computations are presented in Appendix A. For the
description of the solution method for the Green solution in the slowness domain, uJ G

j
, the

reader is referred to this appendix, where the resulting expression for u8 G
j

can be found in
equation (A.17).

2.3. RESPONSE IN THE SPACE}TIME DOMAIN

The response of the layered ground to the moving, oscillatory, vertical load, can be
calculated by substituting the results of the Green solution in terms of slownesses, u8 G

j
(see

equation (A.17)), into equation (12). For plane-layered media, all expressions and matrices
occurring in the method described above are algebraic in the slowness domain.
Subsequently, equation (12) is algebraic and thus the vibrations can be determined by
numerical computation of the integral over slowness p

2
, taking possible singularities

properly into account by including attenuation. This is done by making the LameH
coe$cients complex, with ReMj

n
, k

n
N*0 and ImMj

n
, k

n
N)0. Numerical integration results

in an expression in the space}frequency domain. Finally, the inverse Fourier transform is
performed, in order to obtain the wave"eld in the space}time domain.

3. COMPARISON OF EXPERIMENTAL AND COMPUTATIONAL RESULTS

In order to observe seismograms due to moving trains, a pilot experiment has been
performed. Two receiver lines, each consisting of 24 vertical geophones, were laid out, one
parallel to the railway track (further referred to as the parallel line) and the other
perpendicular (perpendicular line) (see Figure 2). The geophones were placed with a 2)5 m
spacing and recorded vertical particle velocity. Use was made of 10 Hz geophones, with
a 12 dB per octave damping factor below 10 Hz and a recording cut-o! frequency of 1 Hz.
Several of trains passages have been recorded. In order to obtain an estimate of the
di!erent soil parameters at the test site, the response of the soil to a small explosive
charge has been recorded as well. In Figure 3(a) this response is displayed. In this
seismogram, the vertical particle velocity has been plotted as a function of horizontal
distance and time.



Figure 2. Top view of the experimental set-up. Twenty-four receivers have been laid out (parallel to the track)
and 24 perpendicular to the track. Receiver spacing is 2)5 m.

Figure 3. Response of the soil to an active, non-moving source (a), and the simulated response (b). In (a) three
events can be clearly distinguished: the direct and the head wave, indicated by a

1
and a

2
, respectively, and the

Rayleigh wave (c
R
).
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Three di!erent events can be distinguished clearly in Figure 3(a) (indicated by a
1
, a

2
and

c
R
), of which one is the refraction (a

2
). Therefore, the simple assumption is made that the

subsurface can be modelled by one layer, overlying a half-space. An estimate of the
thickness of this layer has been found. For this purpose, the wave speeds of the direct wave
and the refracted compressional wave are to be estimated, which can be done by
determining the slopes of the lines connecting the phase arrivals in the seismogram.
Figure 4 shows a close-up of two di!erent recordings; the di!erence being the position of
the explosive charge. The two di!erent source positions during the experiment are indicated
by the #ags at the top margin. Comparison of the velocities in both shot gathers in Figure 4



Figure 4. Close-up of the response of the soil to an explosive charge, for two shot positions (indicated by the
#ag). Three di!erent events can be clearly distinguished. The Rayleigh wave in the top layer, c

R
, travels with a speed

of 57 m/s. The compressional wave speeds, for the top layer, a
1
, and the half-space, a

2
, are 325 and 1650 m/s

respectively; q denotes the intercept time for the compressional wave arrivals and x
c
is the critical distance from

which the layer depth can be estimated.
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con"rms the assumption that the subsurface can be interpreted as a horizontal one-layer
model. At large o!sets, the refracted wave travels with the speed of the P-wave in the second
layer, i.e., the homogeneous half-space for this model. The direct wave is the P-wave in the
top layer. Thus, an estimate for a

1
and a

2
can be made. Now, the thickness of the top layer

can be estimated by means of the relation

h"(x
c
/2) J(a

2
!a

1
)/(a

2
#a

1
) , (13)

where x
c
is the critical distance as indicated in Figure 4. From the slopes, a P-wave speed of

325 m/s in the top layer (indicated by a
1
in Figure 3(a)) and 1650 m/s in the half-space (a

2
) is

obtained. The critical distance is about 22)5 m, suggesting a layer thickness of about 9)3 m.
For further details on seismic data processing, the reader is referred to reference [10].

The shear wave speeds in the top layer and the underlying half-space are estimated from
the usual values for the ratio between P- and S-waves for the Dutch soil. For soft soil, this
ratio (i.e., a/b) lies between 4 and 7, and it decreases for increasing P-wave speeds. Taking
this ratio as 5)5 in the top layer and 4)2 in the underlying half-space, shear wave speeds of 60
and 380 m/s are obtained.

The speed of the shear wave in the top layer can also be estimated by the speed of the
Rayleigh wave, which carries most of the energy and is clearly visible in the seismogram (c

R
in Figure 3(a)). The speed of the Rayleigh wave is about 57 m/s, which gives the reasonable
suggestion that the shear wave is 5% faster than the Rayleigh wave.

A depth of 9)3 m is too deep for the water table in average Dutch soil conditions, but
locally it may be deeper. The "rst layer, with the estimated thickness of about 9)3 m, is
interpreted to be above the water table or at least only partially saturated with water, while
the second layer (half-space) is below the water table. The observed Rayleigh wave speed
(c

R
) satis"es ones expectation based on the observed P-wave and derived S-wave speeds in



Figure 5. Simulated vertical particle velocity as a function of distance perpendicular to the track and time for (a)
subcritical (25 m/s) and (b) supercritical (75 m/s) train speeds. Scale of (b) is 100 times the scale of (a), indicating that
the signals in (b) are 100 times stronger. c

M
is the velocity of the waves propagating perpendicular to the track

(about 88 m/s), which is greater than the Rayleigh wave speed (57 m/s).
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the top layer with an estimated thickness of about 9)3 m. This thickness can thus be
considered as the "rst boundary in the subsoil.

In order to determine the LameH coe$cients for the soil, assumptions about the densities
of the two layers have to be made. The density of the top layer (o

1
) is taken to be

1800 kg/m3, corresponding to a clayey soil, and 2000 kg/m3 in the half-space (o
2
),

corresponding to the density of wet sand.
In Figure 3(b), the simulated response of this one-layer model to an active, non-moving,

source has been plotted. A reasonable agreement is noticed, in particular for the two
compressional waves and the Rayleigh wave.

Once the soil parameters were determined, several computations have been performed for
trains having di!erent speeds, i.e., for a subcritical and a supercritical train speed, and for
trains exerting either a constant or an oscillating force. Here, the critical speed has been
de"ned to be the Rayleigh wave speed of a homogeneous half-space with soil properties
equal to those of the top layer.

First, the computational results for the case of a non-oscillating load are discussed, for
both the subcritical (c"25 m/s) and supercritical case (c"75 m/s). For both cases, the
response of the geophones perpendicular to the track is calculated. A bandlimited response
is considered, containing frequencies between 2)5 and 60 Hz (with a sin2 tapering), which is
related to the characteristics of the vertical geophones (this is accounted for by the function
= of equation (12)).

Figure 5(a) shows the vertical particle velocities at depth z"0)2 m, as a function of
horizontal distance perpendicular to the track, and as a function of time. It is observed that,
for the subcritical case, the generated waves decay very rapidly away from the track. For the
supercritical case (see Figure 5(b)), a shock wave is clearly visible, and the vibrational level is
much higher in comparison to the subcritical case. In the direction perpendicular to the
track, this shock wave propagates with a speed higher than the Rayleigh wave speed:

c
M
"c

R
/sin h

r
, (14)



Figure 6. Simulated vertical particle velocity as a function of distance parallel to the track (at a distance of 2)5 m
from the track) and time for both (a) subcritical (25 m/s) and (b) supercritical (75 m/s) load speeds. Scale of (b) is 100
times the scale of (a), but equal to the scale in Figure 5(b). The disturbance travels parallel to the track with
a velocity equal to the train speed.
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where h
R
"a cos(c

R
/c) (see also reference [1]). In this case, this speed is about 88 m/s. Also

visible are multiple re#ections of the shock wave at the layer interface at about 9 m depth.
In Figure 6, the velocities computed for the parallel line are plotted as functions of

distance along the track, and as functions of time. Here, the distance of the line from the
track was 2)5 m. The wave travels with the speed of the train, both for the subcritical
(Figure 6(a)) and the supercritical (Figure 6(b)) cases. Again, a stronger vibrational level for
trains travelling with supercritical speed is observed.

Now, the experimental results are considered and compared with the modelled results for
an oscillating load. In Figure 7, one of the seismograms due to a moving train has been
plotted, recorded during the "eld experiment. Figure 7(a) shows the vertical velocity of the
parallel line and Figure 7(b), the velocity of the perpendicular line. In the parallel line
record, the waves propagating ahead of the train, in the forward direction, are clearly
visible, and the waves propagating backwards are visible when the train has passed. Waves
propagating ahead of the train contain higher frequencies than the waves propagating
backwards from the train. This is illustrated in the spectra of these two types of waves. In
Figure 8, the spectra of two time windows of the measured response data have been plotted.
The frequency spectrum of the waves travelling ahead of the train contains higher
frequencies and the spectrum of the waves propagating backwards clearly contains lower
frequencies, which is due to the Doppler e!ect.

For a moving source and a stationary observer, it can be shown that

u
app

"u
c
(c

R
/(c

R
$c)), (15)

where c
R

is the Rayleigh wave speed of the top layer, c is the train velocity, u
c
is the resonant

frequency of the train and u
app

is the frequency observed by the stationary observer.
First, an attempt is made to estimate the train speed, which was not measured during the

experiment. An estimate of the train speed can be obtained by applying equation (15) to two



Figure 7. Field measurement of the vertical particle velocity (a) parallel to line and (b) perpendicular to line
during a train passage. The train moves from left to right. In (a) forward propagating waves ahead of the train are
observed, indicated by c`, and backward propagating waves, c~ (after the train has passed). In the oval, the
transition from forward to backward propagating waves is indicated. Line c

R
in (b) indicates the Rayleigh wave,

which travels at a speed of 57 m/s.

Figure 8. Frequency spectra of the experimental data for (a) forward propagating waves, ahead of the train and
(b) backward propagating waves, behind the train.
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matching frequency peaks, one in the low-frequency and the other in the high-frequency
spectrum. The assumption is made that the frequency of 4)5 Hz in the middle of the
spectrum of Figure 8(b) corresponds to the frequency of 11 Hz in the middle of the spectrum
of Figure 8(a). In this way, a train speed of about 25 m/s can be found. This value is in
agreement with the train speed that is obtained by dividing the distance between axle bogies



Figure 9. Modelled vertical particle velocity as a function of distance and time, both parallel to the track (a) and
perpendicular to the track (b). Train travels at a speed of 25 m/s. Clearly visible are the waves travelling ahead of
the train, c`, and the waves propagating backwards, c~. The load velocity is indicated by c, which can be retrieved
from the transition point from high- to low frequency of each signal, indicated in the oval region. Furthermore, c

R
indicates the Rayleigh wave speed.
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and the intercept time for sequential arrivals of these bogies. The arrival times can be clearly
distinguished in Figure 7(a). Taking a distance between axles of about 18 m, again a train
speed of about 25 m/s can be found.

Having determined the train velocity, individual resonance frequencies can be estimated
by applying equation (15) on two other coupled frequencies. From the frequencies of 11,
12)6, 14 and 15)5 Hz of Figure 8(a), the values of 6)3, 7)1, 8)0 and 8)8 Hz are obtained for
u

c
/2n. These frequencies are used as input parameters for the synthetic example, together

with the estimate of the train speed. In Figure 9, the simulated response has been plotted.
A major di!erence between the synthetic and real data is the signal length. This is due to the
fact that the train is modelled as a single point source, whereas a real train consists of several
wheel sets and can be seen as a sequence of point sources, all interacting with each other and
thus producing a longer and far more complex signal than the modelled train. However,
interesting similarities can be observed if the vertical velocity of the parallel line is
considered, for both the real and the synthetic data, shown in Figures 7(a) and 9(a). From
the waves propagating ahead of the train, the Rayleigh wave can be clearly distinguished
and its velocity can be determined, which corresponds to the earlier found value of 57 m/s.
Furthermore, it is observed that waves propagating forward, ahead of the train, contain
high frequencies and waves propagating backward, behind the train, contain low
frequencies. In the synthetic example, this is more clearly seen than in the real data.
Furthermore, in the area of the graph located by the ovals in Figures 7(a) and 9(a), the
transition from forward to backward propagating waves can be clearly seen. This transition
indicates the moment of the pass-by of the train. In the synthetic example, Figure 9(b), the
load speed can be retrieved from these transition points (which are not visible in the real
data).

In Figure 10, the Doppler shift can be observed for the simulated train signal, which
corresponds to the four main resonance frequencies. The dip in the amplitudes for the
low- and high-frequency peaks is due to the bandlimitation=(u) of the signal. Both spectra
show good agreement with the spectra of the measured data (see Figure 8).

The conclusion can be drawn that there is a good qualitative agreement between the real
and the simulated data. Furthermore, it is noticed that vibrations due to an oscillating load



Figure 10. Frequency spectrum of the simulated data for (a) forward propagating waves, ahead of the train and (b)
backward propagating waves, behind the train. The decrease in amplitudes of the peaks is due to the bandlimitation
of the signal and is due to the modelled characteristics of the geophones and the attenuation parameters.
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can be observed at rather large distances, even if the train speed is smaller than the critical
wave speed.

4. CONCLUSIONS

In this paper, both theoretical and experimental results have been presented on the
vibrations due to moving trains. The theoretical results have been obtained by an e$cient,
three-dimensional method for the analysis of railway-induced ground vibrations based on
a representation of the wave"eld in the slowness domain. In this domain, all equations can
be expressed in algebraic form for horizontally layered media and can be computed
numerically. The experiment has been performed to make a comparison between
measurements and theoretical results. The modelled results indicate that, for slow,
non-oscillating trains, vibrations decay very rapidly away from the track. However, if the
train shows an oscillatory behaviour due to irregularities in the wheels or the track, the
vibrations can be observed at larger distances from the track. For trains moving at
supercritical speed, shock waves occur. The predictions of the vibrations due to moving
trains show a good qualitative agreement with the data of the "eld experiment. Both the
computed and measured results clearly show the Doppler shift and the forward and
backward propagating waves. Moreover, the experimental results show that trains generate
a signi"cant amount of Rayleigh waves. At the experimental site, the Rayleigh waves
propagate with a speed of 57 m/s, which is lower than the intended maximum speed of the
high-speed trains in the Netherlands in the near future. In order to compute the quantitative
predictions of the vibration level of high-speed trains, a next step is the introduction of the
geometry of the embankment into the problem. This scattering problem can be formulated
in terms of integral equations employing the Green function that can be determined with
the method outlined in the present study.
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APPENDIX A: DERIVATION OF THE GREEN SOLUTION

The objective is to obtain a representation for the Green solution in the slowness domain,
uJ G
j
(p

1
, p

2
, z), which is used in equation (12) to calculate the three components of the

displacement vector at the receiver.
The Green solution, in the spatial domain, is the solution of the set of equations,

equations (1) and (2), with f
j
(x) substituted by f G

j
(x; x@)"a

j
d(x!x@), where d (x!x@)

denotes a three-dimensional unit pulse at position x@ and a
j
is an arbitrary constant vector.

The displacement in the jth direction, observed at position x, is then uG
f
(x; x@), where the

frequency dependence has been omitted because of convenience.
First, it is assumed that the elastic properties are piecewise constant in each layer. Then,

coupled equations for displacement and stress can be set-up, in which the dependence on
the vertical co-ordinate is emphasized.

The displacement and the traction are both continuous across any horizontal plane in the
medium. Therefore, the equations of motion and the constitutive relation are reorganized,
thus generating a system of "rst order di!erential equations with respect to depth z. Two
decoupled sets of equations are obtained, after the introduction of some new elements:

uG
V
"L

1
uG
1
#L

2
uG
2
, uG

H
"L

1
uG
2
!L

2
uG
1
. (A.1, A.2)

For both the stresses qG
V3

, qG
H3

and the forces f
V
, f

H
, a similar procedure can be applied. The

vertical components, uG
3
, qG

33
and f G

3
, remain unchanged. The decoupling is in terms of the

compressional and vertically polarized shear waves and the horizontally polarized shear
waves.
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A.1. DECOUPLING: P}SV AND SH SYSTEMS

Both sets of equations have the form

L
3
b"uA

n
b!s, (A.3)

where the subscript n denotes the layer number.
For P}S< waves, the equation reads as

L
3

;

<

P

S

"u

0 pA1!
2b2

n
a2
n
B (o

n
a2
n
)~1 0

!p 0 0 (o
n
b2
n
)~1

!o
n

0 0 p

0 o
n
(v

n
p2!1) !pA1!

2b2
n

a2
n
B 0

;

<

P

S

!

0

0

F
3

F
V

, (A.4)

where p"J(p2
1
#p2

2
) and z

n~1
(z(z

n
and for SH waves, the following equation is

obtained:

L
3 C
=

¹D"uC
0 (o

n
b2
n
)~1

o
n
(b2

n
p2!1) 0 D C

=

¹D!C
0

F
H
D . (A.5)

In equation (A.4) and (A.5), ;, <,=, P, S, ¹ and F
3
, F

V
, F

H
are scaled variables. They

read as

;"uJ G
3
, P"qJ G

33
/u, F

3
"fI G

3
/u, <"!uJ G

H
/(up), S"!qJ G

V3
/(u2p),

F
V
"!fI G

V
/(u2p), ="!uJ G

H
/(up), ¹"!qJ G

H3
/(u2p), F

H
"!fI G

H
/(u2p). (A.6)

Equations (A.4) and (A.5) are similar to the ones presented by Kennett [9, pp. 29}30], the
only di!erence being the fact that, instead of the radial p of Kennett, here slowness

p"Jp2
1
#p2

2
is obtained. Thus, a similar approach can be followed to determine the

response of a layered half-space in the slowness domain. In the subsequent sections, all
expressions necessary for the computations are presented. For certain aspects of the
derivations the reader is referred to reference [9].

A.2. SCATTERING MATRIX METHOD

The "rst order di!erential equations, derived in the previous section, are solved by using
a recursive method, called the scattering matrix method. The main advantage of the
recursive solution method is that it reduces the e!ect of exponentially growing terms and
therefore it can handle thick layers and evanescent waves properly. A propagator approach
can become less e!ective in these cases.

A.2.1. ;p- and downgoing waves

The boundary value problem, equation (A.3), is solved by computing the scattering
matrices of the region above the source and the region below the source. The scattering
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matrix of a section between two reference levels describes the relation between waves
propagating towards that section and propagating away from that section. The scattering
matrices of the sections are constructed recursively, and contain the transmission and
re#ection properties of each of the interfaces present.

To "nd a relation between the waves above and below the source level, a transformation
of the "eld into up- and downgoing waves is performed. This can be done by multiplying
equation (A.3) with D~1

n
, the inverse eigenvector matrix of A

n
. The solution of the resulting

equation reads as

v(z)"Q
n
(z, zJ )v (zJ ) with z

n~1
(zJ , z(z

n
(A.7)

in terms of a wave propagator Q
n

("e+u(z~z8 )K
n
v(zJ )), which depends on the di!erence

between the observation and reference depth. Matrix K
n
is the eigenvalue matrix of A

n
, and

v"D~1
n

b is the vector consisting of up- and downgoing-wave components.
For P}S< waves, matrix Q

n
reads as

Q
n
(z, zJ )"diag(e~+uqa,n(z~z8 ), e~+uqb,n(z~z8 ), e+uqa,n(z~z8 ), e+uqb,n(z~z8 ))

with z
n~1

(zJ , z(z
n

(A.8)

and for SH waves

Q
n
(z, zJ )"diag(e~+uqb,n(z~z8 ), e+uqb,n(z~z8 ) with z

n~1
(zJ , z(z

n
) (A.9)

with qMa,bN,n"J1/Ma, bN2
n
!p2 denoting the vertical slowness for the nth layer.

A.3. WAVEFIELD AT SOURCE LEVEL

The wave"eld at the receiver level can be determined by calculating the wave"eld at the
source level and subsequently propagating the wave"eld to the receiver. The wave"eld at
the source can be expressed in terms of discontinuities. In terms of up- and downgoing
waves, explicit expressions are obtained for both the downgoing wave"eld just below the
source level z

src
, i.e., v

D
(z`

src
), and the upgoing wave"eld just above the source, i.e., v

U
(z~

src
).

They read as

v
D
(z`

src
)"(I!Ssrc

U
Ssrc
D

)~1(p
D
!Ssrc

U
p
U
), (A.10)

v
U
(z~

src
)"(I!Ssrc

D
Ssrc
U

)~1(Ssrc
D

p
D
!p

U
), (A.11)

where p
U

and p
D

are the source discontinuities, expressed in up- and downgoing waves, with
the source assumed to be located in the n

s
th layer. Vector p is then de"ned as follows:

p"(pT
U
, pT

D
)T"D~1

ns
s, (A.12)

where D~1
ns

is the inverse of the local eigenvector matrix of the source layer and s follows
from equation (A.3)}(A.5).

Matrices Ssrc
U

and Ssrc
D

, appearing in equation (A.10) and (A.11), are the scattering matrices
for the sections above and below the source respectively. They are constructed according to
a recursive scheme. The scattering matrices for the upgoing and downgoing waves are given
by

Ssrc
U
"Esrc

U
Sns~1
U

Esrc
U

(A.13)
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and

Ssrc
D
"Esrc

D
Sns
D
Esrc
D

. (A.14)

Here, Sns~1
U

is the scattering matrix for the section above the (n
s
!1)th interface. Sns

D
is the

scattering matrix for the section beneath the n
s
th interface. Esrc

U
and Esrc

D
are the propagation

matrices from the source to interfaces above and beneath the source respectively. They can
be retrieved from the wave propagator Q

n
(see equations (A.8) and (A.9)).

Matrices Sns~1
U

and Sns
D

can be constructed with the help of a recursive scheme. For
Sns~1
U

the scheme reads as

Sn
U
"G

R0
U

for n"0

Rn
U
#Tn

D
EnSn~1

U
En(I!Rn

D
EnSn~1

U
En)~1Tn

U
for n'0.

(A.15)

The recursion starts with n"0 and ends as soon as n"n
s
!1 has been reached. The

scattering matrix Sn
U
(n'0) is a sum of a part, describing the re#ection at the nth interface

and a part which describes the transmission upwards through the nth interface, the
generation of multiples, the re#ection of these waves by the previous scattering matrix and
the transmission downwards through the nth interface [9, p. 133]. Equation (A.15) holds for
both the P}S< and the SH systems. For n"0, the scattering matrix of the upgoing waves is
equal to the re#ection of the free surface, because no transmission takes place through this
interface and no waves enter the half-space. Therefore, S0

U
"R0

U
, where R0

U
is given in

equation (C.2) for P}S< waves and in equation (C.3) for SH waves. Detailed expressions of
the re#ection and transmission matrices for interfaces are given in Appendix C. In
equation (A.15) matrix En describes the propagation of waves in the nth layer.

The derivation of matrix Sns
D

is similar to the derivation of Sns~1
U

and the reader is referred
to reference [9]. The use of such a recursive scheme reduces the e!ect of exponentially
growing terms and thus handles thick layers and evanescent waves more accurately.

A.4. WAVEFIELD AT RECEIVER LEVEL

After computation of the wave"eld at the source level, the wave"eld at the receiver can be
calculated by propagating the "eld from source to receiver level. Assuming that the receiver
and source are located in the same layer, the wave"eld at the receiver level is now obtained
from

v (z
r
)"Q

ns
(z

r
, z

s
)v(z

s
) (A.16)

with Q
ns
(z

r
, z

s
) the wave propagator, given in equations (A.8) and (A.9).

The case of the receiver and source being located in di!erent layers will not be discussed
here, but the reader is referred to Kennett [9, pp. 163}170].

A.5. GREEN SOLUTION

Finally, the wave"eld at the receiver level in terms of ;, < and = is obtained by
multiplying the wave"eld vector v with the eigenvector matrix D

n
. The Green solution in the
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slowness domain then reads as

uJ G
1

uJ G
2

uJ G
3

"

1

p

0 jp
1

!jp
2

0 jp
2

jp
1

p 0 0

;

<

=

, (A.17)

where equations (A.1), (A.2) and (A.6) have been used.

APPENDIX B: EIGENVECTOR MATRIX D

In this appendix, expressions for eigenvector matrix D
n
and its inverse D~1

n
are presented.

They have been derived by Kennett [9, pp. 48}51].
The eigenvector matrix has the form

D
n
"C

M
U,n

M
D,n

N
U,n

N
D,n
D (B.1)

for both types of waves. For P}S< waves it consists of the following 2]2 matrices:

MM;,DN,n
"C

Gea,n jqa,n eb,n p
ea,np Geb,n jqb,nD

, (B.2)

NM;,DN,n
"C
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(2b2

n
p2!1) Geb,n 2jo

n
b2
n
pqb,n

Gea,n 2jo
n
b2
n
pqa,n eb,non

(2b2
n
p2!1)D (B.3)

with ea,n"(2o
n
qa,n)~1@2 and eb,n"(2o

n
qb,n)~1@2. For SH waves, the elements read as

MM;,DN,n
"eb,n/bn

, NM;,DN,n
"Geb,n jo

n
b
n
qb,n . (B.4, B.5)

The inverse eigenvector matrix reads as

D~1
n

"jC
!NT

D,n
MT

D,n
NT

U,n
!MT

U,n
D . (B.6)

APPENDIX C: REFLECTION AND TRANSMISSION MATRICES

C.1. REFLECTION AT THE FREE SURFACE

In reference [9, p. 118], expressions for the re#ection matrices at the free surface for both
P}S< and SH waves can be found. For both systems, the following relation holds:

R0
U
"!N~1

D,1
N

U,1
. (C.1)

For P}S< waves the re#ection matrix then reads as

R0
U
"

1

4p2qa,1qb,1#v2
1

4p2qa,1qb,1!v2
1

4ipvJqa,1qb,1
4ipv

1
Jqa,1qb,1 4p2qa,1qb,1!v2

1

(C.2)

with v
1
"2p2!1/b2

1
.
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For SH waves the re#ection scalar reads as

R0
U
"1. (C.3)

C.2. REFLECTION AND TRANSMISSION AT AN INTERFACE

The transmission and re#ection matrices at an interface read as

TnM;,DN"jSM
D,n

, MM;,DN,n`1
T~1, (C.4)

RnM;,DN"!SMM;,DN,n
, M

D,n`1
T~1SM

U,n
, MM;,DN,n`1

T, (C.5)

where the S T operation in equation (C.4) is de"ned by

SM
D,n

, M
U,n`1

T"(M
D,n

)TN
U,n`1

!(N
D,n

)TM
U,n`1

. (C.6)
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